Estimation of Covariance Matrix via the Sparse Cholesky Factor with Lasso

نویسندگان

  • Changgee Chang
  • Ruey S. Tsay
چکیده

In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equiangular and equi-sparse methods. We use simulation to compare the performance of the proposed methods with others available in the literature, including the sample covariance matrix, the banding method, and the L1-penalized normal loglikelihood method. We then apply the proposed methods to a portfolio selection problem using 80 series of daily stock returns. To facilitate the use of lasso in high-dimensional time series analysis, we develop the dynamic weighted lasso (DWL) algorithm that extends the LARS-lasso algorithm. In particular, the proposed algorithm can efficiently update the lasso solution as new data become available. It can also add or remove explanatory variables. The entire solution path of the L1-penalized normal loglikelihood method is also constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty by Elizaveta Levina,1 Adam Rothman

The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, ...

متن کامل

Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty

The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, ...

متن کامل

Adaptive estimation of covariance matrices via Cholesky decomposition

This paper studies the estimation of a large covariance matrix. We introduce a novel procedure called ChoSelect based on the Cholesky factor of the inverse covariance. This method uses a dimension reduction strategy by selecting the pattern of zero of the Cholesky factor. Alternatively, ChoSelect can be interpreted as a graph estimation procedure for directed Gaussian graphical models. Our appr...

متن کامل

A path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)

Given n observations of a p-dimensional random vector, the covariance matrix and its inverse (precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is often used to mitigate the problem. In this paper, we proposed an `1 penalized pseudo-likelihood estimate for the inverse ...

متن کامل

Covariance selection and estimation via penalised normal likelihood

We propose a nonparametric method to identify parsimony and to produce a statistically efficient estimator of a large covariance matrix. We reparameterise a covariance matrix through the modified Cholesky decomposition of its inverse or the one-step-ahead predictive representation of the vector of responses and reduce the nonintuitive task of modelling covariance matrices to the familiar task o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009